| | | • | | | | | | |-----------------------------------|-----------|---------|----------|----------|----------|--|--| | | LIVINGSTO | N G-121 | ODOT 1½' | DAYBREAK | G-109 BE | | | | Analyte | RESULT | DL | RL | RESULT | DL | | | | Dioxins/Furans (pg/g) | | | | | | | | | 1,2,3,4,6,7,8-Hepta CDD | 0.144 | 0.111 | 1.00 | 0.300 | 0.0950 | | | | 1,2,3,4,6,7,8-Hepta CDF | ND | 0.106 | 1.00 | ND | 0.0760 | | | | 1,2,3,4,7,8,9-Hepta CDF | ND | 0.105 | 1.00 | ND | 0.0757 | | | | 1,2,3,4,7,8-Hexa CDD | ND | 0.113 | 1.00 | ND | 0.108 | | | | 1,2,3,4,7,8-Hexa CDF | ND | 0.0600 | 1.00 | ND | 0.0891 | | | | 1,2,3,6,7,8-Hexa CDD | ND | 0.118 | 1.00 | ND | 0.113 | | | | 1,2,3,6,7,8-Hexa CDF | ND | 0.063 | 1.00 | ND | 0.0929 | | | | 1,2,3,7,8,9-Hexa CDD | ND | 0.117 | 1.00 | ND | 0.113 | | | | 1,2,3,7,8,9-Hexa CDF | ND | 0.060 | 1.00 | ND | 0.0898 | | | | 1,2,3,7,8-Penta CDD | ND | 0.117 | 1.00 | ND | 0.0948 | | | | 1,2,3,7,8-Penta CDF | ND | 0.109 | 1.00 | ND | 0.0948 | | | | 2,3,4,6,7,8-Hexa CDF | ND | 0.057 | 1.00 | ND | 0.0842 | | | | 2,3,4,7,8-Penta CDF | ND | 0.106 | 1.00 | ND | 0.0923 | | | | 2,3,7,8-Tetra CDD | ND | 0.109 | 0.200 | ND | 0.109 | | | | 2,3,7,8-Tetra CDF | ND | 0.078 | 0.200 | ND | 0.101 | | | | Octa CDD | 0.746 | 0.171 | 2.00 | 1.45 | 0.199 | | | | Octa CDF | ND | 0.101 | 2.00 | ND | 0.200 | | | | Total Hepta CDD | 0.291 | 0.111 | 1.00 | 0.564 | 0.0950 | | | | Total Hepta CDF | 0.226 | 0.106 | 1.00 | 0.0901 | 0.0758 | | | | Total Hexa CDD | ND | 0.117 | 1.00 | 0.128 | 0.112 | | | | Total Hexa CDF | ND | 0.0598 | 1.00 | ND | 0.0889 | | | | Total Penta CDD | ND | 0.117 | 1.00 | ND | 0.0948 | | | | Total Penta CDF | ND | 0.107 | 1.00 | ND | 0.0936 | | | | Total Tetra CDD | ND | 0.109 | 0.200 | ND | 0.109 | | | | Total Tetra CDF | ND | 0.0779 | 0.200 | ND | 0.101 | | | | Polychlorinated Biphenyls (ug/kg) | | | | | | | | | Aroclor 1016 | ND | | 10.3 | ND | | | | | Aroclor 1221 | ND | | 10.3 | ND | | | | | Aroclor 1232 | ND | | 10.3 | ND | | | | | Aroclor 1242 | ND | | 10.3 | ND | | | | | Aroclor 1248 | ND | | 10.3 | ND | | | | | Aroclor 1254 | ND | | 10.3 | ND | | | | | Aroclor 1260 | ND | | 10.3 | ND | | | | | Organochlorine Pesticides (ug/kg) | | | | | | | | | Aldrin | ND | | 4.82 | ND | | | | | alpha-BHC | ND | | 4.82 | ND | | | | | beta-BHC | ND | | 4.82 | ND | | | | | delta-BHC | ND | | 4.82 | ND | | | | | gamma-BHC (Lindane) | ND | | 4.82 | ND | | | | | cis-Chlordane | ND | | 4.82 | ND | | | | | trans-Chlordane | ND |
4.82 | ND | | |--|----|----------|----|--| | 4,4'-DDD | ND |
4.82 | ND | | | 4,4'-DDE | ND |
4.82 | ND | | | 4,4'-DDT | ND |
4.82 | ND | | | Dieldrin | ND |
4.82 | ND | | | Endosulfan I | ND |
4.82 | ND | | | Endosulfan II | ND |
4.82 | ND | | | Endosulfan sulfate | ND |
4.82 | ND | | | Endrin | ND |
4.82 | ND | | | Endrin Aldehyde | ND |
4.82 | ND | | | Endrin ketone | ND |
4.82 | ND | | | Heptachlor | ND |
4.82 | ND | | | Heptachlor epoxide | ND |
4.82 | ND | | | Methoxychlor | ND |
14.5 | ND | | | Chlordane (Technical) | ND |
145 | ND | | | Toxaphene (Total) | ND |
145 | ND | | | Semivolatile Organic Compounds (ug/kg) | | | | | | Acenaphthene | ND |
2.79 | ND | | | Acenaphthylene | ND |
2.79 | ND | | | Anthracene | ND |
2.79 | ND | | | Benz(a)anthracene | ND |
2.79 | ND | | | Benzo(a)pyrene | ND |
4.18 | ND | | | Benzo(b)fluoranthene | ND |
4.18 | ND | | | Benzo(k)fluoranthene | ND |
4.18 | ND | | | Benzo(g,h,i)perylene | ND |
2.79 | ND | | | Chrysene | ND |
2.79 | ND | | | Dibenz(a,h)anthracene | ND |
2.79 | ND | | | Fluoranthene | ND |
2.79 | ND | | | Fluorene | ND |
2.79 | ND | | | Indeno(1,2,3-cd)pyrene | ND |
2.79 | ND | | | 1-Methylnaphthalene | ND |
5.57 | ND | | | 2-Methylnaphthalene | ND |
5.57 | ND | | | Naphthalene | ND |
5.57 | ND | | | Phenanthrene | ND |
2.79 | ND | | | Pyrene | ND |
2.79 | ND | | | Carbazole | ND |
4.18 | ND | | | Dibenzofuran | ND |
2.79 | ND | | | 4-Chloro-3-methylphenol | ND |
27.9 | ND | | | 2-Chlorophenol | ND |
13.9 | ND | | | 2,4-Dichlorophenol | ND |
13.9 | ND | | | 2,4-Dimethylphenol | ND |
13.9 | ND | | | 2,4-Dinitrophenol | ND |
69.7 | ND | | | 4,6-Dinitro-2-methylphenol | ND |
69.7 | ND | | | 2-Methylphenol | ND |
6.97 | ND | | | | | | | | | 3+4-Methylphenol(s) | ND |
6.97 | ND | | |------------------------------|------|----------|----|--| | 2-Nitrophenol | ND |
27.9 | ND | | | 4-Nitrophenol | ND |
27.9 | ND | | | Pentachlorophenol (PCP) | ND |
5.57 | ND | | | Phenol | ND |
5.57 | ND | | | 2,3,4,6-Tetrachlorophenol | ND | 13.9 | ND | | | 2,3,5,6-Tetrachlorophenol | ND |
14.6 | ND | | | 2,4,5-Trichlorophenol | ND | 13.9 | ND | | | 2,4,6-Trichlorophenol | ND |
13.9 | ND | | | Bis(2-ethylhexyl)phthalate | ND |
41.8 | ND | | | Butyl benzyl phthalate | ND |
27.9 | ND | | | Diethylphthalate | ND |
27.9 | ND | | | Dimethylphthalate | ND |
27.9 | ND | | | Di-n-butylphthalate | ND |
27.9 | ND | | | Di-n-octyl phthalate | ND |
27.9 | ND | | | N-Nitrosodimethylamine | ND |
6.97 | ND | | | N-Nitroso-di-n-propylamine | ND |
6.97 | ND | | | N-Nitrosodiphenylamine | ND |
6.97 | ND | | | Bis(2-Chloroethoxy) methane | ND |
6.97 | ND | | | Bis(2-Chloroethyl) ether | ND |
6.97 | ND | | | Bis(2-Chloroisopropyl) ether | ND |
6.97 | ND | | | Hexachlorobenzene | ND |
2.79 | ND | | | Hexachlorobutadiene | ND |
6.97 | ND | | | Hexachlorocyclopentadiene | ND |
13.9 | ND | | | Hexachloroethane | ND |
6.97 | ND | | | 2-Chloronaphthalene | ND |
2.79 | ND | | | 1,2-Dichlorobenzene | ND |
6.97 | ND | | | 1,3-Dichlorobenzene | ND |
6.97 | ND | | | 1,4-Dichlorobenzene | ND |
6.97 | ND | | | 1,2,4-Trichlorobenzene | ND |
6.97 | ND | | | 4-Bromophenyl phenyl ether | ND |
6.97 | ND | | | 4-Chlorophenyl phenyl ether | ND |
6.97 | ND | | | Aniline | ND |
13.9 | ND | | | 4-Chloroaniline | ND |
6.97 | ND | | | 2-Nitroaniline | ND |
55.7 | ND | | | 3-Nitroaniline | ND |
55.7 | ND | | | 4-Nitroaniline | ND |
55.7 | ND | | | Nitrobenzene | ND |
27.9 | ND | | | 2,4-Dinitrotoluene | ND |
27.9 | ND | | | 2,6-Dinitrotoluene | ND |
27.9 | ND | | | Benzoic acid | ND |
348 | ND | | | Benzyl alcohol | ND |
13.9 | ND | | | Isophorone | ND |
6.97 | ND | | | Azobenzene (1,2-DPH) | ND |
6.97 | ND | | | Azobenzene (1,2-DPH) | I ND |
6.97 | ND | | | Bis(2-Ethylhexyl) adipate | ND | | 69.7 | | ND | | |---------------------------|-------|----------|--------------|----|--------------------------------|-----------| | 3,3'-Dichlorobenzidine | ND | | 27.9 | | ND | | | 1,2-Dinitrobenzene | ND | | 69.7 | | ND | | | 1,3-Dinitrobenzene | ND | | 69.7 | | ND | | | 1,4-Dinitrobenzene | ND | | 69.7 | | ND | | | Pyridine | ND | | 13.9 | | ND | | | Total Metals (mg/kg) | | | | | | | | Arsenic | 1.02 | | 1.02 | | 59.0** | | | Barium | 41.8 | | 1.02 | | 74.4 | | | Cadmium | 0.234 | | 0.203 | | ND | | | Chromium | ND | | 4.06 | | 9.69 | | | Copper | 98.2 | | 1.02 | | | | | Lead | 2.42 | | 0.203 | | 3.47 | | | Manganese | 204 | | 1.02 | | | | | Mercury | ND | | 0.0813 | | ND | | | Selenium | ND | | 2.03 | | ND | | | Silver | ND | | 0.203 | | ND | | | Zinc | 30.0 | | 1.60 | | | | | Notes: | | | | | | | | | * | = confir | mation resu | lt | | | | | | <u> </u> | ds Import Cr | | eria | | | | ND | | | | | | | | ** | 4.43 and | d 4.46 mg/kg | g. | t reported by
Laboratory re | ports fro | | | | copper, | zinc and ma | ng | anese results | are not o | | | DAYBREAK G-109 BEACH BACK | | ACH BACK | | | | | | |----------|---------------------------|----------|----------|---------------|----------|-------|--------|---------| | АСН ВАСК | Rea | analysis | s | LIVINGSTON G- | 121 BERN | л вас | ВІ | B-S Con | | RL | RESULT | DL | RL | RESULT | DL | RL | RESULT | DL | | | | | | | | | | | | 1.00 | | | | 0.192 | 0.101 | 1.00 | | | | 1.00 | | | | ND | 0.104 | 1.00 | | | | 1.00 | | | | ND | 0.103 | 1.00 | | | | 1.00 | | | | ND | 0.102 | 1.00 | | | | 1.00 | | | | ND | 0.100 | 1.00 | | | | 1.00 | | | | ND | 0.107 | 1.00 | | | | 1.00 | | | | ND | 0.105 | 1.00 | | | | 1.00 | | | | ND | 0.106 | 1.00 | | | | 1.00 | | | | ND | 0.101 | 1.00 | | | | 1.00 | | | | ND | 0.103 | 1.00 | | | | 1.00 | | | | ND | 0.110 | 1.00 | | | | 1.00 | | | | ND | 0.0949 | 1.00 | | | | 1.00 | | | | ND | 0.108 | 1.00 | | | | 0.200 | | | | 0.726 | 0.108 | 0.200 | | | | 0.200 | | | | 6.81 (7.20*) | 0.100 | 0.200 | | | | 2.00 | | | | 0.783 | 0.105 | 2.00 | | | | 2.00 | | | | ND | 0.107 | 2.00 | | | | 1.00 | | | | 0.327 | 0.101 | 1.00 | | | | 1.00 | | | | ND | 0.104 | 1.00 | | | | 1.00 | | | | ND | 0.106 | 1.00 | | | | 1.00 | | | | ND | 0.100 | 1.00 | | | | 1.00 | | | | ND | 0.103 | 1.00 | | | | 1.00 | | | | ND | 0.109 | 1.00 | | | | 0.200 | | | | 0.726 | 0.108 | 0.200 | | | | 0.200 | | | | 11.7 | 0.100 | 0.200 | | | | | | | | | | | | | | 10.2 | | | | ND | | 10.5 | | | | 10.2 | | | | ND | | 10.5 | | | | 10.2 | | | | ND | | 10.5 | | | | 10.2 | | | | ND | | 10.5 | | | | 10.2 | | | | ND | | 10.5 | | | | 10.2 | | | | ND | | 10.5 | | | | 10.2 | | | | ND | | 10.5 | | | | | | | | | | | | | | 4.42 | | | | ND | | 4.66 | | | | 4.42 | | | | ND | | 4.66 | | | | 4.42 | | | | ND | | 4.66 | | | | 4.42 | | | | ND | | 4.66 | | | | 4.42 | | | | ND | | 4.66 | | | | 4.42 | | | | ND | | 4.66 | | | | | | |
 | 1 | | | | |------|----|----------|------|---|------|---|--| | 4.42 | |
 | ND | | 4.66 | | | | 4.42 | |
 | ND | | 4.66 | | | | 4.42 | |
 | ND | | 4.66 | | | | 4.42 | |
 | ND | | 4.66 | | | | 4.42 | |
 | ND | | 4.66 | | | | 4.42 | |
 | ND | | 4.66 | | | | 4.42 | |
 | ND | | 4.66 | | | | 4.42 | |
 | ND | | 4.66 | | | | 4.42 | |
 | ND | | 4.66 | | | | 4.42 | |
 | ND | | 4.66 | | | | 4.42 | |
 | ND | | 4.66 | | | | 4.42 | |
 | ND | | 4.66 | | | | 4.42 | |
 | ND | | 4.66 | | | | 13.3 | |
 | ND | | 14 | | | | 133 | |
 | ND | | 140 | | | | 133 | |
 | ND | | 140 | | | | | | | | | | | | | 2.74 | ND |
2.79 | ND | | 2.82 | | | | 2.74 | ND |
2.79 | ND | | 2.82 | | | | 2.74 | ND |
2.79 | ND | | 2.82 | | | | 2.74 | ND |
2.79 | ND | | 2.82 | | | | 4.1 | ND |
4.18 | ND | | 4.23 | | | | 4.1 | ND |
4.18 | ND | | 4.23 | | | | 4.1 | ND |
4.18 | ND | | 4.23 | | | | 2.74 | ND |
2.79 | ND | | 2.82 | | | | 2.74 | ND |
2.79 | ND | | 2.82 | | | | 2.74 | ND |
2.79 | ND | | 2.82 | | | | 2.74 | ND |
2.79 | ND | | 2.82 | | | | 2.74 | ND |
2.79 | ND | | 2.82 | | | | 2.74 | ND |
2.79 | ND | | 2.82 | | | | 5.46 | ND |
5.57 | ND | | 5.64 | | | | 5.46 | ND |
5.57 | ND | | 5.64 | | | | 5.46 | ND |
5.57 | ND | | 5.64 | | | | 2.74 | ND |
2.79 | ND | | 2.82 | | | | 2.74 | ND |
2.79 | ND | | 2.82 | | | | 4.10 | ND |
4.18 | ND | | 4.23 | - | | | 2.74 | ND |
2.79 | ND | | 2.82 | | | | 27.4 | ND |
27.9 | ND | | 28.2 | | | | 13.6 | ND |
13.9 | ND | | 14.1 | | | | 13.6 | ND |
13.9 | ND | | 14.1 | | | | 13.6 | ND |
13.9 | ND | | 14.1 | | | | 68.3 | ND |
69.7 | ND | | 70.5 | | | | 68.3 | ND |
69.7 | ND | | 70.5 | | | | 6.83 | ND |
69.7 | ND | | 7.05 | | | | 6.83 | ND |
69.7 | ND |
7.05 |
 | |------|----|----------|----|----------|------| | 27.4 | ND |
27.9 | ND |
28.2 |
 | | 27.4 | ND |
27.9 | ND |
28.2 |
 | | 27.4 | ND |
27.9 | ND |
28.2 |
 | | 5.46 | ND |
5.57 | ND |
5.64 |
 | | 13.6 | ND |
13.9 | ND |
14.1 |
 | | 14.3 | ND |
14.6 | ND |
14.8 |
 | | 13.6 | ND |
13.6 | ND |
14.1 |
 | | 13.6 | ND |
13.6 | ND |
14.1 |
 | | 41 | ND |
41.8 | ND |
42.3 |
 | | 27.4 | ND |
27.9 | ND |
28.2 |
 | | 27.4 | ND |
27.9 | ND |
28.2 |
 | | 27.4 | ND |
27.9 | ND |
28.2 |
 | | 27.4 | ND |
27.9 | ND |
28.2 |
 | | 27.4 | ND |
27.9 | ND |
28.2 |
 | | 6.83 | ND |
6.97 | ND |
7.05 |
 | | 6.83 | ND |
6.97 | ND |
7.05 |
 | | 6.83 | ND |
6.97 | ND |
7.05 |
 | | 6.83 | ND |
6.97 | ND |
7.05 |
 | | 6.83 | ND |
6.97 | ND |
7.05 |
 | | 6.83 | ND |
6.97 | ND |
7.05 |
 | | 2.74 | ND |
2.79 | ND |
2.82 |
 | | 6.83 | ND |
6.97 | ND |
7.05 |
 | | 13.6 | ND |
13.9 | ND |
14.1 |
 | | 6.83 | ND |
6.97 | ND |
7.05 |
 | | 2.74 | ND |
2.79 | ND |
2.82 |
 | | 6.83 | ND |
6.97 | ND |
7.05 |
 | | 6.83 | ND |
6.97 | ND |
7.05 |
 | | 6.83 | ND |
6.97 | ND |
7.05 |
 | | 6.83 | ND |
6.97 | ND |
7.05 |
 | | 6.83 | ND |
6.97 | ND |
7.05 |
 | | 6.83 | ND |
6.97 | ND |
7.05 |
 | | 13.6 | ND |
13.9 | ND |
14.1 |
 | | 6.83 | ND |
6.97 | ND |
7.05 |
 | | 54.6 | ND |
54.6 | ND |
56.4 |
 | | 54.6 | ND |
55.7 | ND |
56.4 |
 | | 54.6 | ND |
55.7 | ND |
56.4 |
 | | 27.4 | ND |
27.9 | ND |
28.2 |
 | | 27.4 | ND |
27.9 | ND |
28.2 |
 | | 27.4 | ND |
27.9 | ND |
28.2 |
 | | 341 | ND |
348 | ND |
352 |
 | | 13.6 | ND |
13.9 | ND |
14.1 |
 | | 6.83 | ND |
6.97 | ND |
7.05 |
 | | 6.83 | ND |
6.97 | ND |
7.05 |
 | | 68.3 ND 6.97 ND 70.5 27.4 ND 27.9 ND 28.2 68.3 ND 69.7 ND 70.5 68.3 ND 69.7 ND 70.5 13.6 ND 69.7 ND 70.5 13.6 ND 69.7 ND 70.5 13.6 ND 69.7 ND 70.5 1.02 4.45** 1.02 1.65 1.10 4.2 1.02 38.2 1.02 59.4 1.10 1.02 38.2 1.02 59.4 1.10 1.02 38.2 1.02 ND 0 | | | | | | | | |---|--------|--------|------------|------|------------|------|--| | 68.3 ND 69.7 ND 70.5 68.3 ND 69.7 ND 70.5 68.3 ND 69.7 ND 70.5 13.6 ND 13.9 ND 14.1 1.02 38.2 1.02 1.65 1.10 1.02 38.2 1.02 59.4 1.10 1.02 ND 0.221 1.10 4.09 ND ND 1.10 | 68.3 | ND |
6.97 | ND |
70.5 | | | | 68.3 ND 69.7 ND 70.5 68.3 ND 69.7 ND 70.5 13.6 ND 13.9 ND 14.1 1.02 4.45** 1.02 1.65 1.10 4.2 1.02 38.2 1.02 59.4 1.10 0.205 ND 0.221 0.221 4.09 9.51 4.09 ND 4.42 24.5 1.10 0.205 3.28 0.205 2.5 0.221 210 1.10 0.0818 ND 2.21 0.221 | 27.4 | ND |
27.9 | ND |
28.2 | | | | 68.3 ND 69.7 ND 70.5 13.6 ND 13.9 ND 14.1 1.02 4.45** 1.02 1.65 1.10 4.2 1.02 38.2 1.02 59.4 1.10 0.205 ND 0.221 0.221 4.09 9.51 4.09 ND 4.42 24.5 1.10 0.205 3.28 0.205 2.5 0.221 0.0818 ND 0.0818 ND 0.0884 0.205 ND 2.21 0.221 0.205 ND 0.221 | 68.3 | ND |
69.7 | ND |
70.5 | | | | 13.6 ND 13.9 ND 14.1 1.02 4.45** 1.02 1.65 1.10 4.29 1.02 38.2 1.02 59.4 1.10 0.205 ND 0.221 4.09 ND 4.42 24.5 1.10 0.205 3.28 0.205 2.5 0.221 0.0818 ND 0.0818 ND 0.0884 0.205 ND 0.221 0.205 ND 0.221 0.205 ND 0.221 | 68.3 | ND |
69.7 | ND |
70.5 | | | | 1.02 4.45*** 1.02 1.65 1.10 4.2 1.02 38.2 1.02 59.4 1.10 0.205 ND 0.221 4.09 ND 0.221 24.5 1.10 0.205 3.28 0.205 2.5 0.221 210 1.10 0.0818 ND 0.0884 2.05 ND 2.21 0.205 ND 0.221 | 68.3 | ND |
69.7 | ND |
70.5 | | | | 1.02 38.2 1.02 59.4 1.10 0.205 ND 0.221 4.09 9.51 4.09 ND 4.42 24.5 1.10 0.205 3.28 0.205 2.5 0.221 210 1.10 0.0818 ND 0.0884 2.05 ND 2.21 0.205 ND 0.221 | 13.6 | ND |
13.9 | ND |
14.1 | | | | 1.02 38.2 1.02 59.4 1.10 0.205 ND 0.221 4.09 9.51 4.09 ND 4.42 24.5 1.10 0.205 3.28 0.205 2.5 0.221 210 1.10 0.0818 ND 0.0884 2.05 ND 2.21 0.205 ND 0.221 | | | | | | | | | 0.205 ND 0.205 ND 0.221 4.09 9.51 4.09 ND 4.42 1.10 0.205 3.28 0.205 2.5 0.221 210 1.10 0.0818 ND 0.0884 0.0884 2.05 ND 2.21 0.221 0.205 ND 0.221 | 1.02 | 4.45** |
1.02 | 1.65 |
1.10 | 4.29 | | | 4.09 9.51 4.09 ND 4.42 24.5 1.10 0.205 3.28 0.205 2.5 0.221 210 1.10 0.0818 ND 0.0884 2.05 ND 2.21 0.205 ND 0.221 | 1.02 | 38.2 |
1.02 | 59.4 |
1.10 | | | | 24.5 1.10 0.205 3.28 0.205 2.5 0.221 210 1.10 0.0818 ND 0.0884 2.05 ND 2.21 0.205 ND 0.221 | 0.205 | ND |
0.205 | ND |
0.221 | | | | 0.205 3.28 0.205 2.5 0.221 210 1.10 0.0818 ND 0.0884 2.05 ND 2.21 0.205 ND 0.221 | 4.09 | 9.51 |
4.09 | ND |
4.42 | | | | 210 1.10 0.0818 ND 0.0884 2.05 ND 2.21 0.205 ND 0.221 | | |
 | 24.5 |
1.10 | | | | 0.0818 ND 0.0818 ND 0.0884 2.05 ND 2.21 0.205 ND 0.221 | 0.205 | 3.28 |
0.205 | 2.5 |
0.221 | | | | 2.05 ND 2.05 ND 2.21 0.205 ND 0.221 | | |
 | 210 |
1.10 | | | | 0.205 ND 0.205 ND 0.221 | 0.0818 | ND |
0.0818 | ND |
0.0884 | | | | | 2.05 | ND |
2.05 | ND |
2.21 | | | | 33.3 4.42 | 0.205 | ND |
0.205 | ND |
0.221 | | | | | | |
 | 33.3 |
4.42 | ry was 59 mg/kg. The result from reanalysis of a second aliquot from the same sample was 4.45. Three 5-m these additional analyses have not yet been received. n table; supplier indicates results met criteria and will be providing laboratory report | пр | BE | 3-C Con | an | ВЕ | B-N Con | np | | BB-1 | otal C | omp | | |-----|---------|---------|-----------|--------|---------|-----|----------|--------|--------|-----|--| | RL | RESULT | DL | RL | RESULT | | RL | | RESULT | DL | RL | | | IVL | INLOULT | DL | IXL | KLJULI | DL | IVE | | KLJULI | DL | IVE | _ | | | | <u> </u> | | | | | | |
 | | |
 | | | | |--|----------|---|----------|------|--|----------|--------------| | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | |
\vdash | | | | | | | | | \vdash | | |
 | | |
 | | | | | | | | | | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | |
 | | |
 | | | | | | <u> </u> | ı | <u> </u> | | | <u> </u> | | | |
 | |
 | |
 | | |--|------|--------------|------|--|------|--------------------| | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | | | | | | | | | |
 | |
 | |
 |
$\vdash\vdash$ | | |
 | |
 | |
 |
\square | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 | | | |
 | |
 | |
 |
H | | |
 | |
 | |
 |
\Box | | |
 | |
 | |
 |
\vdash | | |
 |
\vdash |
 | |
 |
\vdash | | |
 | |
 | |
 | | | |
 | |
 | |
 |
Щ | | 1.02 | | 4.43 | | 1.04 | | 4.46 | | 1.10 | | 3.91 | | 1.10 | | |-----------|-----|-----------|---------|----------|-----|-----------|--------|---------|------|-----------|-----------|-----------|-----| ND | | 0.22 | 25.2 | | 2.20 | 323 | | 1.10 | 28.9 | | 4.40 | _ | ooint cor | ทกด | osite sam | noles w | ere then | col | lected fr | om the | materia | l an | d the res | sulting a | arsenic c | ond | | | . | | 1 | 1 | | | | Г | | Ī | 1 | 1 | | | | I | <u> </u> | |-----------------|---|---|----|---|----|----|----------| | | | | | | | | | | Import Criteria | 2.5 | | | | | | | | | 2.5 | | | | | | | | | 2.5 | | | | | | | | | 2.5 | | | | | | | | | 2.5 | | | | | | | | | 2.5 | | | | | | | | | 2.5 | | | | | | | | | 2.5 | | | | | | | | | 2.5 | | | | | | | | | 2.5 | | | | | | | | | 2.5 | | | | | | | | | 2.5 | | | | | | | | | 2.5 | | | | | | | | | 0.5 | | | | | | | | | 0.5 | | | | | | | | | 5 | | | | | | | | | 5 | 40 | | | | | | | | | 10 | | | | | | | | | 10 | | | | | | | | | 10 | | | | | | | | | 10 | | | | | | | | | 10 | | | | | | | | | 10 | | | | | | | | | 10 | | | | | | | | | | | | | | | | | | 5 | | | | | | | | | 5
5 | | | | | | | | | | | | | | | | | | 5 | | | | | | | | | 5 | | | | | | | | | 100 | | | | | | | | | | 1 | ı | I. | l | i. | i. | | | | | | I | I | I | I | ı | |--------|----------|---|----------|----------|----------|----------|---| | 100 | | | | | | | | | 5 | | | | | | | | | 5 | | | | | | | | | 5 | | | | | | | | | 5 | | | | | | | | | 5 | | | | | | | | | 5 | | | | | | | | | 5 | | | | | | | | | 5 | | | | | | | | | 5 | | | | | | | | | 5 | | | | | | | | | | | | | | | | | | 5
5 | | | | | | | | | 5 | | | | | | | | | | | | | | | | | | 250 | | | | | | | | | 230 | | | | | | | | | 330 | | | | | | | | | 330 | | | | | | | | | 330 | | | | | | | | | | | | | | | | | | 330 | | | | | | | | | 330 | 330 | | | | | | | | | 330 | | | | | | | | | 330 | | | | | | | | | 330 | | | | | | | | | 330 | | | | | | | | | 330 | | | | | | | | | 10000 | | | | | | | | | | | | | | | | | | 330 | | | | | | | | | 330 | | | | | | | | | 330 | | | | | | | | | | | | | | | | | | 330 | 330 | 330 | | | | | | | | | | <u> </u> | 1 | <u>I</u> | <u>I</u> | <u> </u> | <u> </u> | | | 220 | | | | | |------|--|--|--|--| | 330 | | | | | | | | | | | | 2000 | | | | | | | | | | | | 330 | 330 | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | | | | | | | | | | | | | 330 | 330 | | | | | | 330 | | | | | | | | | | | | 330 | | | | | | | | | | | | 330 | | | | | | 330 | | | | | | 330 | | | | | | 330 | 2000 | | | | | | 330 | 8.8 | | | | | | | |-----------------------|------|-----|-----|---|-----|--| | | | | | | | | | 0.63 | | | | | | | | 76 | | | | | | | | 34 | | | | | | | | 79 | | | | | | | | 1800 | | | | | | | | 0.23 | 180 |
 | | | | | | | |
 | entrations were 4.29, | | | | | | | | Ì | | | | | | | | | | | | | | | | | | l . | l . | 1 | l . | | | — | | | | | |----------|--|--|------|------|
 |
 | | - | | | | | | | | | | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - | — |
 | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - | — |
 | l | | |--|--|--|---|--| | — | | | | | |----------|------|------|------|------|
 | | | | | |
 |
 | | | | | | | | | | | | | | | |
 |
 |
 |
 | | | | |
 |
 | | | | | | | | | | | | | | | | | |
 |
 | | |--|------|--|------|--| | |
 | |
 | | | | | | | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - | — |
 | — | | | | | |----------|--|--|------|------|
 |
 | | - | | | | | | |
 | - | | | |------|------|------|------|--|
 |
 |
 |
 | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - | — |
 | - | | | | | |---|------|------|------|------|
 | | | | | |
 |
 | | | | | | | | | | | | | | | |
 |
 |
 |
 | | | | |
 |
 | | | | | | | | | | | | | | | | | |
 | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - | — |
 | • | | | • | | | |------|------|----|------|---|--|
 | | |
 | | | |
 |
 | |
 | l. | | i. | l. | 1 | | | |
 |
 | | | |------|------|------|-----|------|
 |
 |
 | |
 | | | |
 |
 | | |
 | l . | | | | | |
 | | |--|------|--|------|--| | |
 | |
 | | | | | | | • | | |----------|------|---|--|---|------|
 | | | |
 | | |
 | - | — |
 | l | | |--|--|--|---|--| |
 | | | | | |------|------|------|------|--|
 |
 |
 |
 | | | | | |
 |
 | |
 |
 | |
 | | | |
 | | | | | | | | • | | |----------|--------------|------|------|------| <u> </u> | | | | | | | | | |
 | | |
<u> </u> |
 |
 |
 |
 |
 |
 |
 |
 | |
 |
 |] | l | | | | | | • | | |----------|--------------|------|------|------| <u> </u> | | | | | | | | | |
 | | |
<u> </u> |
 |
 |
 |
 |
 |
 |
 |
 | |
 |
 |] | l | | | | |
 | |----------|---|------| | | |
 |
 | | | |
 | | <u> </u> | l | |